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Abstract. – This paper is intended to be a brief sketch of the main results which derive from
a full theoretical implementation of the problem of how a set of mechanical resonators couples
to an elastic sphere, excited by an incoming Gravitational Wave. The analysis reveals with
remarkable transparency the general structure of the resonant mode splitting and coupling, and
enables the discussion of interesting alternatives to the truncated icosahedron layout. A specific
proposal for a rather complete monopole-quadrupole GW radiation detector is also made.

From a strictly theoretical point of view, a solid elastic sphere is the best resonant mass
GW antenna one can possibly think of [1], yet practical difficulties have prevented to date the
construction of such an antenna. One of the main difficulties has been the readout system,
since it would require a multiple transducer set if the virtues of the sphere are to be exploited
to satisfaction. Indeed, a single motion sensor would be insufficient to take adavantage of
the perfect matching between the sphere’s vibration modes and the GW radiation pattern.
Long experience with cylindrical bars has now generated confidence that these problems can
be solved, and so detailed analysis of the detector characteristics has become of the utmost
interest. In recently published papers [2], [3], Johnson and Merkowitz have studied the problem
of how a set of resonant transducers couples to the quadrupole modes of a solid elastic
sphere. This study has led them to find a very interesting and highly symmetric resonator
configuration, which they call TIGA, and which has been demonstrated experimentally on a
small-scale prototype with remarkable success [4].

The theoretical model proposed by these authors is however restricted to the sphere’s
quadrupole modes. This actually obscures the nature of the approximations involved, but
worse, has led Johnson and Merkovitz to inaccurate conclusions regarding the system dynamics
for resonator configurations other than their TIGA. These, and other considerations of general
theoretical character, have motivated us to attempt a more rigorous approach to the resonator
problem. As a result, a theory of outstanding beauty has emerged, which fully displays the
system response for arbitrary transducer layouts. Furthermore, when applied to the study of
the frequency response of the TIGA prototype developed at LSU [4], our theory has been seen
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to make predictions which conform to the actual experimental measurements to three and four
decimal places —a very remarkable achievement indeed in the reported [4] conditions.

In this letter we shall present the most relevant features of our analysis, along with a
proposal for a new transducer layout, which will be shown to be an appealing alternative for
a rather complete GW antenna. Full details will shortly be given elsewhere.

Following the notation of ref. [1], which will be used throughout, let a sphere of mss M ,
radius R, and density ρ, be endowed with a set of N identical resonators, each of mass Mt≡ ηM
and resonance frequency Ω, located at positions xa, a= 1, . . . ,N , on the sphere’s surface (so
|xa|=R for all a). We shall also assume that the resonators only couple to radial motions .
If we call ξa(t) the a-th resonator’s displacement relative to the undeformed sphere’s surface,
and na the local outward normal, then the equations of motion for the whole system are

ρ
∂2u
∂t2

− µ∇2u− (λ+ µ)∇(∇·u) =

= f(x, t) + ηMΩ2
N∑
a=1

δ(3)(x− xa) [ξa(t)− na ·u(xa, t)] na , (1a)

ξ̈a(t) = −Ω2 [ξa(t)− na ·u(xa, t)] , a = 1, . . . , N (1b)

and they are to be read as follows: the lhs of eq. (1a) contains the inertia and the internal
strain forces in the solid, while its rhs contains the external forces; the latter are split into
a driving force density f(x, t) acting on the sphere —such as a GW tide, a hammer stroke,
or whatever—, and the action of the resonators on its surface. Equation (1b) is quite simply
seen to describe the motion of harmonic oscillators, one of whose ends is rigidly linked to
the sphere’s surface. Equations (1) are completely general, and valid for any solid body and
boundary conditions. Thus, although we shall exclusively concentrate in this paper on a
perfect sphere, any deviations thereof can, and must, be handled by the same general system
of equations.

The solution to (1) can be found in terms of Green-function expansions. The Green function
for driving forces of the separable type

f(x, t) =
∑
α

f (α)(x) g(α)(t) (2)

has been calculated in [1], and in particular for GW excitations, which happen to be of this
form. The reader is referred to that paper for details. The complete solution to eqs. (1) is,
however, not interesting, as the very purpose of attaching transducers is precisely to sense the
sphere’s motion by sampling it at a finite number of points on its surface. In other words, the
measurable quantities

qa(t) ≡ ξa(t)− na ·u(xa, t) , a = 1, . . . , N (3)

are the only ones of our concern. It turns out after some algebra that the above q’s satisfy a
linear system of integro-differential equations, whose solution is most expediently expressed in
terms of Laplace transforms, noted by carets (̂ ) on symbols, as follows:

q̂a(s) = − s2

s2 +Ω2

∑
α

{ N∑
b=1

[
δab + η

s2

s2 +Ω2

∑
ν

Ω2

s2 + ω2
ν

χ
(ν)
ab

]−1

·

·
[∑

µ

B
(α)
µ,b

s2 + ω2
µ

]}
ĝ(α)(s) , a = 1, . . . , N , (4)
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where µ, ν are multiple indices {n`m} each, and B
(α)
µ,b is a term proportional to overlapping

integrals of the tidal form factors f (α)(x) —we skip too many technical details; χ(ν)
ab is a diadic

product of sphere wave functions at locations a and b, and for a perfect sphere is given by

χ
(ν)
ab ≡ χ

(n`)
ab =

2`+ 1
4π

A2
n`(R)P`(na ·nb) , (5)

with P` a Legendre polynomial and An`(R) a radial function coefficient —see [1]. Equations
(4) are somewhat complicated, but this is a result of their generality. We now examine their
consequences in specific cases of interest.

In a practical GW antenna the resonators will be much lighter than the sphere, so the
inequality η¿ 1 will safely hold. Also, their resonance frequency will be assumed to be
accurately tuned to one of the sphere’s eigenfrequencies, ωn`, say. What we do next is to
expand q̂a(s) as a perturbative series in η. Our attention is first drawn to recognise the
presence of an inverse matrix in the rhs of (4): the poles of this inverse matrix, relative to
the Laplace variable s, give the characteristic frequencies of the coupled system, while the
corresponding amplitudes are given by the residues at those poles. The following is found: to
lowest order in η, there appears a symmetric multiplet of frequencies around Ω=ωn`, given
by

ω2
a± = ω2

n`

(
1±

√
2`+ 1

4π
|An`(R)| ζa η1/2

)
+ O(η) , a = 1, . . . , N , (6)

where ζ2
a are the eigenvalues of the matrix P`(na·nb). Some of these may be multiple, and it is

not difficult to prove that 0<ζ2
a ≤N , except ifN > 2`+1, in which case 2`+1 of them still verify

the same inequalities, while all the rest up to N are identically zero. Besides the multiplet
(6), the system has infinitely many other characteristic frequencies, which are, respectively,
equal to the sphere’s frequencies non-equal to Ω, except that they are shifted relative to these
by factors of order η rather than η1/2, as in (6). The amplitudes associated to the latter are,
however, seen to be smaller by factors of at least η1/2 relative to the amplitudes of the modes in
the multiplet (6); also, the amplitudes of the modes corresponding to the eventual eigenvalue
ζ = 0 in (6), which are shifted too by factors of order η relative to ωn` =Ω, are seen to have
the same kind of weaker coupling. These facts, which directly derive from the fundamental
equations (4), constitute the theoretical explanation of the experimental observation that “the
amount of frequency splitting is an indicator of the strength of the coupling” [3].

The quantitative formula for the amplitudes is

q̂a(s) = η−1/2
∑
α

Λ(α)
a (s;n, `) ĝ(α)(s) + O(η0) , a = 1, . . . , N , (7)

where O(η0) contains weaker coupling terms. The coefficient η−1/2 accounts for the enhanced
amplitude of the resonator motions due to resonant energy transfer from the much more
massive sphere. Λ(α)

a (s;n, `) is a transfer function matrix ; it naturally depends on the mode
(n, `) chosen for tuning, and is also a pattern matrix. Equation (7) formally displays the fact
that the number of resonators must be at least equal to the number of signal amplitudes
ĝ(α)(s) to be determined. In the case of a general metric GW this number is 6, as there
is one monopole amplitude ĝ(S)(s) and five quadrupole amplitudes ĝ(m)(s) [1]. The matrix
Λ

(α)
a (s;n, `) can be seen to be such that Λ(S)

a (s;n, `)≡ 0 unless `= 0, and Λ
(m)
a (s;n, `)≡ 0

unless `= 2. In other words, if we want to measure the scalar amplitude ĝ(S)(s), then we need
(at least) one transducer tuned to a sphere monopole frequency, ωn0, and we cannot hope to
measure it with a system tuned to other frequencies, even if the signal g(S)(t) has significant
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Fourier components at those frequencies. Likewise, if we want to measure the quadrupolar
ĝ(m)(s), then we must tune our (at least 5) resonators to a quadrupole sphere frequency, ωn2.

The discussion of monopole radiation sensing is relatively straightforward, and independent
of the transducer layout. The truly interesting issue is what happens to the quadrupole signal,
so we concentrate on it for the rest of this paper. After rather laborious algebra, the Λ-matrix
is found to be

Λ(m)
a (s;n, 2) = (−1)N

√
4π
5
bn

N∑
b=1

{∑
ζc 6=0

1
2

[(
s2 + ω2

c+

)−1

−
(
s2 + ω2

c−

)−1] v(c)
a v

(c)∗
b

ζc

}
·

· Y2m(θb, ϕb) , (8)

where bn is an overlapping integral (b1/R= 0.328, b2/R= 0.106 for the lowest modes —cf. [1]),
and v

(c)
a is the eigenvector corresponding to ζ2

c . If Johnson and Merkowitz’s TIGA is used in
eq. (8), it then greatly simplifies to

Λ(m)
a (s;n, 2) =

√
2π
3
bn

1
2

[(
s2 + ω2

+

)−1 −
(
s2 + ω2

−
)−1
]
Y2m(θa, ϕa) (9)

as first seen by these authors [2]. The reason for this simplicity is that in such configuration
there is one zero ζ-eigenvalue (since there are 6 resonators), whilst the other 5 are all equal
(ζ2
c = 6/5, c= 2, . . . , 6), so the whole multiplet (6) collapses into a single doublet , ω±, plus the

weakly coupled singlet at Ω=ωn2. The nice properties of the rectangular matrix Y2m(θa, ϕa)
have also been exploited by Johnson and Merkovitz to define mode channels , which are direct
measurements of the 5 wave amplitudes ĝ(m)(s). The “uniqueness” of the TIGA configuration
derives from the fact that it is the minimal one (in number of resonators) having a quintuple
ζ-eigenvalue, thus giving isotropic sensitivity to the sensor layout.

The generality of eq. (8) has allowed us for the first time to consistently explore other
resonator layouts, some of which may be appealing alternatives to the TIGA. For example, any
5-resonator distribution with a pentagonal symmetry axis results in three frequency doublets,
two of which are doubly degenerate. Actually, this is the system response for such category of
configurations:

q̂a(s) = −η−1/2

√
4π
5
bn

{
1

2ζ0

[(
s2 + ω2

0+

)−1

−
(
s2 + ω2

0−

)−1]
Y20(θa, ϕa) ĝ(0)(s) +

+
1

2ζ1

[(
s2+ω2

1+

)−1

−
(
s2+ω2

1−

)−1][
Y21(θa, ϕa) ĝ(1)(s)+Y2−1(θa, ϕa) ĝ(−1)(s)

]
+

+
1

2ζ2

[(
s2+ω2

2+

)−1

−
(
s2 + ω2

2−

)−1] [
Y22(θa, ϕa) ĝ(2)(s)+Y2−2(θa, ϕa) ĝ(−2)(s)

]}
. (10)

Although the structure of eq. (8) shows that there always exist “generalised mode channels”,
they are particularly simple in the case of pentagonal configurations. For these, the five mode
channels are

∑5
a=1 Y

∗
2m(θa, ϕa) q̂a(s), m=−2, . . . , 2. The distinctive characteristic of these

configurations is, as shown by eq. (10), that different channels come at different frequencies,
i.e. the ĝ(0)(s) amplitude only excites the doublet ω0±, and is seen in mode channel 0; ĝ(±1)(s)
can only excite the ω1± doublet, and are seen in mode channels ±1, respectively; and, mutatis
mutandi , the same for ĝ(±2)(s).

But this may be used to great advantage in a GW detector. For, imagine we know that a
GW arrives down the resonators’ symmetry axis. Now, evidence of excitation of the ω0± or
ω1± frequency components, for example, is a strong veto on general relativity, as this theory
predicts the excitation of only the ±2 modes. It is somehow unrealistic to think of having
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Fig. 1. – The proposed polyhedric antenna. Transducers are marked as follows: a square for the first
quadrupole frequency, a triangle for the second, and a star for the monopole.

such information on incidence direction, but a more likely practical situation can also be
handled advantageously. Indeed, the fact that different wave modes couple to different detector
frequencies is a very powerful discrimination tool; at the same time, the frequency span of
the multiplet in a forseeable GW antenna will only be a few tens of Hz, so the signal spectrum
is likely to be constant over such span, and hence proposed deconvolution techniques [1], [5]
comfortably applicable.

In fig. 1 we give a graphical representation of what might be considered an interesting
practical implementation of a GW antenna based on the just-discussed pentagonal transducer
layout. It relies on the philosophy of having a polyhedron, rather than a sphere, as a suitable
approach to the GW spherical antenna, for ease of instrumentation attachment and manip-
ulation [4]; the choice was made having in mind that the polyhedron should be as spherical
as possible, whilst having at the same time axes of pentagonal symmetry. Our polyhedron is
called pentagonal hexacontahedron [6], has sixty identical faces (irregular pentagons), and is
considerably more spherical than the TI (1). An inscribed sphere exists which is tangent to
every face at a point, to which a resonator could eventually be linked, thereby accomplishing a
perfect simulation of a spherical distribution, i.e. all transducers equidistant from the centre.

In fig. 1 we also indicate proposed resonator locations —see caption for details. For example,
for the first quadrupole resonance Ω=ω02, it is found that (2)

ω0±=ω02

(
1± 0.5755η1/2

)
, ω1±=ω02

(
1± 0.8787η1/2

)
, ω2±=ω02

(
1± 1.0668η1/2

)
. (11)

In addition to the set of five transducers tuned to ω02, another set of five resonators,
tuned to the second quadrupole frequency, ω12, and located symmetrically in the “southern
hemisphere”, could be attached to the sphere, too. An eleventh resonator, tuned to the
first monopole frequency, ω00, and placed at an arbitrary position, could finally be added as
well. Such an altogether 11-transducer configuration would take advantage of the large-sphere

(1) For example, its volume is 1.057 times that of its inscribed sphere, while the truncated icosa-
hedron is 1.153 times less voluminous than its circumscribed sphere; this means sphericity is a factor
of almost 3 better for our polyhedron.

(2) The chosen distribution has the property that the frequency spacing between members of the
associated multiplet is the most even compatible with the polyhedron face orientations.
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cross-section at its second quadrupole mode [7], and would, therefore, constitute a rather
complete GW detector of its own. Also, it just requires 5 transducers rather than 6 for each
quadrupole mode sensed.
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[5] Magalhães N. S. et al., Mon. Notes R. Astron. Soc., 274 (1995) 670, and references therein.

[6] Holden A., Formes, espace et symétries (CEDIC) 1977.

[7] Coccia E., Lobo J. A. and Ortega J. A., Phys. Rev. D, 52 (1995) 3735.


